

Objectives

- · To identify the 3 main rhythm categories in pediatrics
 - Tachy-dysrhythmias
 - Brady-dysrhythmias
 - Pulseless arrest rhythms
- · Identify key assessment and treatment factors for each

Pediatric Cardiac Rhythms Only 3 Choices....

- Too FAST
 - Sinus Tach
- Tachydysrhythmia
- Too S L O W
 - Sinus brady
 - Heart block
- Pulseless
 - Asystole
 - PEA
- VF/pVT

Approaching Assessment

The approaching assessment / PAT determines your initial hands on assessment.

Is it immediately life threatening? -

CAB (apneic)

- · Check a Pulse/Cardio
- · Check Airway
- · Check Breathing

A B C (breathing)

CAB

- Airway
- · Breathing
- Cardiovascular

If the child is breathing: ABC

• Once you have started your cardiovascular

Its All About Perfusion

- Hands on!
 - Skin temp
 - CRT
 - Pulse comparison
- CV VS
 - HR
 - ? BP
 - Temperature
- LOC

Once you get to the Pulse Check:

- Too FAST
 - Tachydysrhythmias- SVT, AF/F, VT
 - Sinus Tachycardia
- Too SLOW
 - Bradydysrhythmias- SB, AVB

Too FAST

- Tachycardia:
 - Relative- too fast for child's level of activity and clinical condition
 - Sinus tach- SA node faster than normal
- Tachy-dysrhythmias:
 - Conduction system issue
 - SVT, VT, AF/AF

Sinus Tachycardia

- Normal response to possibly abnormal problem.
- Fever, pain, hypovolemia, medications
- Instability if from underlying issue, not necessarily from the rhythm

SINUS TACHYCARDIA MAY THE FIRST SIGN SHOCK IN THE PEDIATRIC PATIENT

Pulse: WAY Too Fast

- Rate > 220 Infant,>180 child
- QRS: Narrow= < .09
- Regular
- P waves absent or abnormal
- May be episodic
 - <u>S</u>upra <u>V</u>entricular <u>T</u>achycardia

• Medication

Adenosine 0.1mg/ kg (max 1st dose-6mg)

If IV/ IO already in place

• Electricity-Synchronized Cardioversion 0.5-1j/kg (Ito 2j/kg if not effective)

If no IV/IO or if adenosine ineffective

Atrial Flutter Newborns CHD, esp post op Output Atrial rate can be > 300 min, ventricular response slower, and can be irregular Classic "saw tooth" pattern

Ventricular Tachycardiaw/Pulse

- Wide QRS QRS > .09 and patient STABLE:
 - Consider Adenosine if regular and monomorphic
 - EXPERT CONSULTATION
 - Amiodarone OR Lidocaine OR Procainamide

UNSTABLE:

 synchronized cardiovert- 0.5-1j/kg. If unsuccessful, consider 6 H's 5 T's (?Toxins?)

Wide Complex Tachycardia-Torsades De Points- Polymorphic VT

- Congenital
- Toxidromes
 - Type I anti-arrhythmics (Procainamide, quindidine)
 - Type III anti-arrhythmics (sotalol, amiodarone)
 - TCA's
- TREATMENT:
 - ABC's
 - MAGNESIUM!!
 - ? Lidocaine

Too SLOW Brady-dysrhythmias

- Sinus Brady
- Sinus Arrest, resulting in:
 - AV Blocks
 - Junctional rhythm
 - Ventricular escape rhythm

Too SLOW- Brady-dysrhythmias HR slower than normal for pt age

- Primary- CHD, acquired HD- cardiomyopathy, myocarditis, conduction abnormalities or damage
- Secondary- results from conditions that alter normal function (hypoxia, acidosis, hypothermia, hypotension, etc)

AV Blocks:

- First degree- prolonged PR- if seen in ingestions: BEWARE
- Second Degree
- Mobitz Type I- Wencheback
 Rx, [in parasympathetic tone, MI]
- Mobitz Type II Lesions in conduction pathway, some Rx, ACS
- Third Degree/ Complete
 Conduction system damage, MI, congenital block, myocarditis, Rx, in parasympathetic tone

Brady-dysrhythmias-Stable or Unstable?

- Unstable:
 - · Shock like perfusion
 - Sudden collapse
 - Hypotension

BradyDysrhythmias

- ullet ullet
 - CPR- always if HR <60 & poor perfusion
 - Epinephrine
 - Atropine- give 1st in AV blocks, myocarditis, cardiomyopathy
- Pacing- esp CHD

Pulseless Arrest

Pulseless Arrest

Two Presentations:

Asphyxial Arrest

- Respiratory Failure> Cardiopulmonary Failure
- Hypotensive Shock > Cardiopulmonary Failure

Sudden Cardiac Arrest

Cardiac etiology

Pulseless Arrest 3 Types: Asystole PEA VF/ Pulseless VT 2 Types of treatment: Not shockable (PEA, Asystole) Shockable (VF/ pulseless VT) All get EPI as first line Rx.....

Ventricular Fibrillation/ pVT TX: DEFIB! (CPR till defib arrives) 2-4j/kg CPR- 2minutes, continue through charging 4j +/ kg CPR- 2 minutes Epinephrine (as soon as ready & q 3-5 mins) CPR -2 minutes 4+ j/ Kg CPR- 2minutes Antiarhythmic

2015 AHA Updates

- Compression depth still inadequate
- Lidocaine OR amino for pVT, unstable VT
- Normothermia post ROSC

Case Scenario #1

- Called to a residence c/c infant" not breathing right"
- AOSTF: Mom states the baby has had vomiting and diarrhea for 2 days. Infant is quietly laying in crib..
- Approaching assessment:
 - Infant is pale/ grey
 - Gasping
 - · lethargic

CAB

- Circulation: Pale, cool skin, bradycardic with weak central, no distal pulses
- Airway: Patent
- Breathing: Ineffective

Physiologic status?

Cardiopulmonary Failure

- C- Pt is bradycardiac and poorly perfused
- START CHEST COMPRESSIONS!
- Second HCP: open airway and begin....
- - BVM 15:2 with 100%

Pulses return after brief CPR......

- Now, switching to ABC assessment:
 - Pt is allowing BVM (LOC??)
 - BVM (often) = Emesis... prepare for it....
 - BBS clear and = (rate of ventilation with ROSC?)
 - HR 180, CRT > 4 sec's, cool from knees down

Physiologic status now? **Priorities?**

Case Study #2

- · Called to residence of an infant who won't take his bottle
- AOSTF:
 - Pale
 - Tachypneic
 - Lethargic

ABC

- Airway- patent
- Breathing
 - BBS
 - RR
 - WOB
- Circulation
 - Temp
 - CRT
 - Pulses

Rhythm Review

